

Woody Plant User Manual Version v1.1 | 2025

Website URL: https://woodyplant.com/

Contact@woodyplant.com

Table of Contents

Intro	oduct	tion	1
1.	Hor	ne	2
	1)	WP-MOD Logo	3
	2)	Navigation bar	3
	3)	Introduction	3
	4)	Species Shortcut	3
	5)	Data Overview	3
	6)	Latest News	3
2.	Spe	cies	4
	1)	Quick Search	4
	2)	View Modes	4
	3)	Species Details	4
3.	Tax	onomy	10
	1)	Taxonomy Page Overview	10
	2)	Species Taxonomy Details Page (eg: Amborella trichopoda)	10
4.	Тоо	ls	11
	1)	Sequence Analysis	11
	2)	Omics Analysis	21
	3)	Others	33
5.	Dat	a	37
6.	Hel	p	38
7.	Q 8	د A	38
	1)	How to find information about a specific gene for a particular species?	38
	2)	How to access data on a gene family across all woody plant species?	41
	3)	How to quickly download data from WP-MOD for customized analysis?	43

Introduction

Woody plants, typically encompassing trees, shrubs, and woody lianas, are generally perennial in nature. The presence of wood as a structural tissue facilitates the annual growth of woody plants from above-ground stems, resulting in some of them becoming the largest and tallest terrestrial plants. Here, we create the **Woody Plant Multi-Omics Database (WP-MOD)**, a digital platform crafted to unlock the genetic secrets of woody plants. At the latest version of WP-MOD, it includes the multi-omics information of 373 woody plants with whole-genome references, transcriptomes, methylome, sRNAomics, degradome, etc. The mission of WP-MOD is to collect and provide as much data and related information of woody plants as possible.

Figure 1. Framework of WP-MOD.

1. Home

The link to the Woody Plant Database home page is <u>https://woodyplant.com/</u>.

For access to data, users can visit the Home, Species, Taxonomy, Tools, Data, and Help sections in the navigation bar.

Woody Plant		公 小	N.	
Home Species Taxonomy	Tools Data H	elp		
Woody Plant Multi-Omics Database (N Woody plants, typically encompassing trees, perennial in nature. The presence of wood as annual growth of woody plants from above-gro- them becoming the largest and tallest terrest Woody Plant MultiOmics Database (WP-MO crafted to unlock the genetic secrets of wood) WP-MOD, it includes the multi-omics informs whole-genome references, transcriptomes transcriptomes, degradome, epigenome, etc. collect and provide as much data and related in Species Shortcut	NP-MOD) 3 shrubs, or lianas, are generally a structural tissue facilitates the und stems, resulting in some of rial plants. Here, we curate the D), a digital haven meticulously plants. At the latest version of tition of 373 woody plants with to, methylome, small RNA The mission of VP-MOD is to formation more	C S S S S S S S S S S S S S S S S S S S	10 10 10 10 10 10 10 10 10 10	2 Sparmer_Ner + Litery_Non Sparmer_Ner + L
Ziziphus jujuba Ables alba	Acacla acuminata Acacla	melanoxylon Acer catajofolium	Acer negundo	Acer pseudosleboldianum
5 Taxanania Statistics of S	nanias in WR MOD	Summary of Mul	ti Omias Data in W	PMOD
Independence of a	satalaine : 4 Antendes: 3 Encative: 14 Hobies: 17 Hobies: 18 Hobies: 18 Hobie	Cenome RNA-Seq atRNA-Seq BS-Seq D 250 500	750 1600 1250	1500 1750 2000
Latest News	6	Oitation		
> New Features in Version 1.1 2024-12-01		If you use WP-MOD in your sc	lentific research, pleas	e cite us:
More news		WP-MOD: an integrative platforr	n for multi-ornics of wood	ly plant. 2023.
Woody Plant About us / 0 DATERATE Copyright (C <u>Guo Lab (CCP) 2012/02/84/99) 4</u>	Contact us / Documentation			

Figure 2. Overview of Homepage.

1) WP-MOD Logo

Users can return to the home page from any WP-MOD page by clicking the logo.

2) Navigation bar

WP-MOD provides a navigation bar at the top of all of its pages to allow users to easily move between sections of the database.

3) Introduction

Brief summary of data in the database. Goals and expectations of WP-MOD.

4) Species Shortcut

By clicking on the image for the species of interest, go to the Omics page where you can access all the data and tools available of this species.

5) Data Overview

These charts offer an intuitive way to explore species diversity and data distribution. The Taxonomic Statistics pie chart shows the distribution of plant species across taxonomic orders, while the Multi-Omics Data Summary bar chart shows the available omics datasets, including Genome, RNA-Seq, and sRNA-Seq, providing a quick overview of species diversity and data coverage.

6) Latest News

Updated data and new versions of WP-MOD.

2. Species

The Species page provides access to 373 plant species in WP-MOD, allowing users to efficiently browse and search for species. Features include:

Woody Plant	Ď	- ME	No. M.	S.	Ser St	and a start						1-	Woody SATA	Plant			AL.		
Home Species Taxonom	7 Tools	Data H	lelp										Home Specie	Taxonomy	Tools Dat	a Help			
Quick search:		Q. Saarch								Ξ	1		Quick search:		Q	Search			₽ =
Species :	Order :	Family :	Genome Size	Release Date	Reseq	RNA-seq	sRNA-seq	ATAC-seq	ChiP-seq	85-seq			Amborellales						
Abies alba	Finales	Pinaceae	18.17 Gb	2020-05-05	v.	4	×		×	*		2 🖛	Dindi						
Assola acuminata	Fabales	Fabaceae	880.09 Mb	2021-05-24	÷.		×		*	*		-	Nº 1						
Acticia melanonylon	Fabales	Fabaceae	749.11 Mb	2021-05-24	v.	v.	8		×	*									
Acer catalpriolium	Sapindales	Sapindaceae	654.51 Mb	2022-01-06	Ŵ.	ý	×		*			/	-						
Acer negundo	Sapindales	Sapindaceae	442.44 Mb	2022-10-06	d.	ý.	×		×				Amborella motopoda						
Acer pseudosieboidierum	Sapindales	Sapindaceae	690.37 Mb	2021-09-01	v.	ý.	×		×	100		3	O Aquitoliales						
Acer saccharum	Sapindales	Sapindaceae	626.45 Mb	2023-07-18	N	4	×			-			Arecales						
Aper transature	Sapindales	Sapindaceae	633.28 Mb	2020-09-22	÷.	÷		/		*						>>//		300	
Acer yangbiesse	Sepindales	Sapindaceae	1.96 Gb	2019-05-29	v	/		*	×	*			26	No	XIII	SE		25	
Actividia chinensia	Ericales	Actinidaceae	631.45 Mb	2019.00.08	v	÷	3		×.	*					11/1	T	NP-		
Asgiceras comiculatum	Ericales	Princiaceae	626.75.18	2022-4-28	Ń	ų.	×		×					1	10 22.21	0,10	PL.		
Asgle marmalca	Sapindales	Rutaceae	275.99 Mb	2023-07-02	v.	4	×		×	*			Areca catechu	Elaeis guineensis	Elaeis oleifera	Metroxylon sagu	Nypa fruticans	Phoenix dachyifera	
Alsophila spinulosa	Cyathoales	Cyatheaceae	6.23 Gb	2022-11-9	×	×	×	*	×	×			A sterales						
Amborella trichspoda	Amboreliales	Amberelaceae	710.00 Mb	2024-03-07	÷	4	3	×	8	×					stat airmon				

Figure 3. Species Page Overview.

1) Quick Search

Instantly find species by entering a name in the search box.

2) View Modes

Switch between table view and figure view.

3) Species Details

Click on a species image or name to access its dedicated page with comprehensive information and available datasets (eg: *Amborella trichopoda*). The species detail page is divided into three main sections:

Figure 4. Species Detail Page Overview.

A. Species Info.

This section provides basic information about this species:

a) Overview (eg: Amborella trichopoda)

Figure 5. Species Overview Page.

i. Overview

The Overview section provides key taxonomic and genomic details about the species, including its scientific name, common name, taxonomy ID, lineage, ploidy, and chromosome number. It also includes genome assembly information such as assembly level, genome size, and version, helping users understand the sequencing and annotation status. A reference species image is displayed for visual identification.

ii. Statistics of Omics Data

The Statistics of Omics Data section presents a graphical summary of available sequencing datasets, including resequencing, RNA-Seq, sRNA-Seq, ChIP-Seq, ATAC-Seq, and BS-Seq. The experiment count (blue bars) indicates the number of sequencing projects conducted, while the library count (green bars) represents the available sequencing libraries, providing a quick overview of omics data coverage for

the species.

b) Germplasms (eg: *Ilex paraguariensis*)

Home	Species	Taxonomy	Tools	Data	Help						
Species	info.	I Germplasi	ms								
Germpla	isms	Accession	Accession Name		Taxonomy	Origin	Received	Improved	l status		
🔁 Omics I	Data	PI 284783	~		llex paraguariensis A. StHil.	Australia	1962				
Genome Re-sequ	encing	PI 279952 PI 284783	DE	IP No. 21-274	llex paraguariensis A. StHil.	Argentina	1962				
RNA-Se sRNA-S	q ieq	PI 103698 PI 284783			llex paraguakensis A. StHil.	Paraguay	1933			USUA National Plan	t Germplasm System
ChIP-Se ATAC-S BS-Seq	eq	PI 105222 PI 284783			llex paraguariensis A. StHil.	Argentina	1933			USDA Introduces a Multi Year Nan to Strengthen	U.S. Genebank Management of Plant Generation
🔁 Omics /	Analysis	PI 101516 PI 284783	l.		llex paraguariensis A. StHil.	Argentina	1932		Summary Pesspor	n Tauchamy Other Poligree [IPR]	Observation
Seq. Analy Blast	sis	= PI 94775 PI 284783	PI		llex paraguariensis A. StHil.	Argentina	1931		Summary Data Texenomy: Unlight Helesalnest	Norporegeniersis A. StHI. Collectual – Automilia Historic Record	Availability This is Notoical information about this accession. It no longer exists and our not her negatively.
JBrowse Gene Re	etrieval	PI 69865 PI 284783			llex paraguariensis A. StHil.	Asunción, Paraguay	1926		Received by NPGS: PLAntigrad: Inventory Vollams	15 Nor 1962 1967 170 Vew odginal Planc Inventory data is pet format	
Gene Ar Transcri Gene Or	notation ption Factor thologs	PI 57770 PI 284783			llex paraguariensis A. StHil.	Buenos Aires, Argentina	1923		There are no image	is for this accession.	
Search I PlantiSN	ay Go IASH	PI 55621 PI 284783			llex paraguariensis A. StHil.	Buenos Aires, Argentina	1922				
Omics Ana Transcri	Ilysis ptome	= PI 55566 PI 284783			llex paraguariensis A. StHil.	Asunción, Paraguay	1922				
MicroRN ChIP ATAC	IAs								More		

Figure 6. Germplasms Page Overview.

The Germplasms page provides a list of germplasm accessions sourced from the USDA National Plant Germplasm System (GRIN-Global). Each entry includes details such as accession number, taxonomy, origin, received date, and improvement status, allowing users to explore the historical and geographic background of the species' genetic resources. Clicking on an accession number redirects users to the corresponding GRIN-Global page, where they can access comprehensive records.

B. Omics Data (eg: *Amborella trichopoda*)

The Omics Data section provides access to genomic and transcriptomic datasets for the species. It includes Genome data and other omics datasets such as Re-sequencing, RNA-Seq, sRNA-Seq, ChIP-Seq, ATAC-Seq, and BS-Seq.

a) Genome

Home Species Ta	ixonomy Tools E	ata Help							
🗐 Species Info.	I Genome Info.								
Overview Germplasms	Organism	Amborella trichopoda	Assembly Level	Chromosome					
🗟 Omics Data	Assembly Source	ANA-grade	Assembly Version	Amtr_2024					
Genome	Annotation Source	ANA-grade	Contig Num.	37					
Re-sequencing RNA-Seq	Genome Length	710.00 Mb	Contig N50	54 Mb					
sRNA-Seq ChIP-Seq	Scaffold Num.	24	Transcript Num.	0					
ATAC-Seq BS-Seq	Scaffold N50	54 Mb	Release Data	2024-03-07					
Omics Analysis	BUSCO	97.8	PCG Num.	0					
Seq. Analysis	Publication	ANAgdb: a multi-omics and t	axonomy database for ANA-grade						
Blast									
JBrowse Gene Retrieval Gene Annotation	I Genome Download								
Transcription Factor	Assemble								
Gene Orthologs Search by Go	Amborella_trichopoda_Ar	ntr_2024_genome.fa.gz							
PlantiSMASH	Amborella_trichopoda_v1	.0_genome.fa.gz							
Omics Analysis									
Transcriptome	Annotation								
ChIP	Amborella_trichopoda_Ar	ntr_2024_cds.fa.gz							
ATAC Methylation	Amborella_trichopoda_v1	.0_cds.fa.gz							
RNA-seq & ChIPorATAC-seq	Amborella_trichopoda_Ar	ntr_2024_mRNA.fa.gz							
Others	Amborella_trichopoda_v1	.0_mRNA.fa.gz							
Literature Brimer Design	Amborella_trichopoda_Amtr_2024_protein.fa.gz								
Phylogenice Tree	pesign enice Tree Amborella_trichopoda_v1.0_mRNA fa gz								
Amborella_trichopoda_Amtr_2024.gene.gff3.gz									
	Amborella_trichopoda_v1	.0.gene.gff3.gz							
	Download All	Download Selected							

Figure 7. Genome Page Overview.

i. Genome Info.

Displays essential genome assembly details, including assembly source, genome size, scaffold numbers, contig statistics, BUSCO score, and related publications.

ii. Download

Provides genome sequence and annotation files, including assembled genome data, CDS, mRNA, protein sequences, and GFF annotation files. Users can download all files or select specific ones.

b) Other Omics Data (eg: RNA-Seq)

Home	Species	Taxonomy	Tools	Data	Help			
Species	info.	I Project	t					
Overviev	v							
Germpla	asms	Bioproje	ect	Description		Publication	GVCF File	Library Num.
🔀 Omics E	Data			The Amborella C	Genome Sequencing Project			
Genome Re-sequi RNA-Sec	encing q	PRJNA2	12863	seeks to produce genome sequen reference in com analyses to shee characteristics o of extant flowerin	e a high-quality finished ce that will serve as a nparative evolutionary d light on the genomic of the last common ancestor ng plants.	Amborella Genome Project et al., 2013	٢	22 🔻
SRNA-Se	eq							
ATAC-Se	eq	Library		Title		Platform	Total Base	VCF File
BS-Seq	Analysis	SRR5293	3260	RNA-Seq of Amb with older roots fr of California Sant 400bp	orella trichopoda: mature plant om USA: California university a Cruz Arboretum, AtrOroots-	ILLUMINA	3565175000 bp	
Seq. Analy Blast JBrowse	sis	≡ SRR5293	3261	RNA-Seq of Amb with old leaves fro of California Sant 400bp	orella trichopoda: mature plant om USA: California university a Cruz Arboretum, AtrOlvs-	ILLUMINA	3477114600 bp	
Gene Re Gene An Transcrip	etrieval inotation ption Factor	SRR5293	3262	RNA-Seq of Amb with young leaves university of Calif AtrYlvs-400bp	orella trichopoda: young plant s from USA: California ornia Santa Cruz Arboretum,	ILLUMINA	3665122200 bp	
Gene Or Search b PlantiSM Omics Ana	unologs by Go IASH Ilvsis	SRR5293	3263	RNA-Seq of Amb with female buds university of Calif Atrfbuds2-400bp	orella trichopoda: mature plant from USA: California iornia Santa Cruz Arboretum,	ILLUMINA	3757348200 bp	÷
Transcrip	ptome IAs	SRR5293	3266	RNA-Seq of Amb plant with flower f Botanical Garden	orella trichopoda: mature male from USA: Georgia Atlanta , 14A	ILLUMINA	2134522000 bp	٢
ChIP								

Figure 8. RNA-seq Page Overview.

Clicking the Bioproject ID or Library Number redirects users to the corresponding NCBI database page for more detailed information, while clicking the publication link takes users to the original research article. If a green download button appears, it indicates that the RNA-Seq dataset has been reprocessed and is available for download.

C. Omics Analysis

The Omics Analysis section provides quick access to various bioinformatics tools, including sequence analysis, omics data processing, and additional resources like literature search and primer design. These tools are identical to those available in the Tools interface, and clicking on any option will redirect users to the corresponding tool page for further analysis. For detailed descriptions and usage instructions, users can refer to the Tools page.

3. Taxonomy

Woody Plant							
Home Species Taxonomy	Tools Data Help						
器 Woody Plant Taxonomy Search		Download Taxonomy Ir	ifo.				
Scientific name e.g. Amborella trichopoda	a Authority e.g. Baill	REF. e.g. Hist. Pl. 1; 328. 1869. Search					
Scientific name 🗘	Authority ÷	REF. :	*				
Abies alba	Mill	Gard. Dict. (ed. 7) 110, 2.1759.					
Acacia acuminata	Benth.	London J. Bot. 1: 373.1842.	😹 Types				
Acacia melanoxylon	R. Br.	Hortus Kew. (ed. 2) 5: 462.1813.	Accession: 14 Signate same Aniumic Inclasso				
Acer catalpifolium	Rehder	Pl. Wilson. 1(1): 87–88.1911.	SiderBite rame. Ambando brotogodo Autority: Roll				
Acer negundo	L	Sp. Pl. 2: 1056.1753.	Npt: Benedid (Derginnin) (Marka 1928 - 97) DEF Hall (1 1 2/2 1860				
Acer pseudosieboldianum	(Pax) Kom.	Trudy Imp. SPeterburgsk. Bot. Sada 22: 725.1904.	Type kooffy				
Acer saccharum	Marshall	Arbust. Amer. 4.1785.	8 Altum				
Acer truncatum	Bunge	Enum. Pl. Chine Sor. 10.1833.					
Acer yangbiense	Y.S. Chen & Q.E. Yang	Nov. 13(3): 296–299, f. 1, 2.2003.					
Actinidia chinensis	Planch.	London J. Bot. 6: 303.1847.					
Aegiceras corniculatum	(L.) Blanco	Fl. Filip.: 79 (1837)					
Aegle marmelos	(L.) Corréa	Trans. Linn. Soc. 5: 223.1800.					
Alsophila spinulosa	Wall. ex Hook.	Contr. Gray Herb. 200: 32 (1970)					
Amborella trichopoda	Baill.	Hist. Pl. 1: 328.1869.					
Anacardium occidentale	L	Sp. Pl. 1: 383.1753.					

Figure 9. Taxonomy Page Overview.

1) Taxonomy Page Overview

The Taxonomy page includes 373 species, allowing users to search by scientific name, authority, or reference to find specific taxa. Clicking on a species name redirects users to a detailed page that provides taxonomic classification, authority, reference, and type information.

2) Species Taxonomy Details Page (eg: Amborella trichopoda)

The species taxonomy details page provides essential taxonomic information, including the scientific name, authority, reference, type locality, and specimen image. It also features an image album showcasing real photos of the species. Additional details such as herbarium placement, leaf habit, and links to external databases like POWO and Tropicos are integrated to offer users a more comprehensive taxonomic resource.

4. Tools

Home	Species	Taxonomy	Tools	Data	Help		
器 Sequence	e Analysis						
Blast Find similar biological se	regions betwe equences	en	JBrowse A modular genome visualzing biologic	e browser for al data		Gene Retrieval Fetch genomic, mRNA, CDS, protein sequences	Gene Annotation Annotate against InterPro's member database
Transcriptio Annotate TF database	onal Factor ⁻ s against Plan	tTFDB	Gene Orthologs Identify orthologou OrthoFinder	is genes using		Search by GO Search genes by GO IDs	PlantiSMASH Analyze plant secondary metabolite
X Omics An	nalysis						
Transcripto Gene expres RNA-seq da	o me ssion atlas bas ita	ed on	MicroRNAs Annotation of micr on sRNA-seq data	oRNAs based		ChIP Identify genome-wide DNA binding sites based on ChIP-seq	ATAC Determine chromatin accessibility based on ATAC-seq
Methylation Detect meth genomic DN	n Iylated cytosine IA based on BS	es in G-seq	RNA-seq & ChIPo Integrated analysis and ChIP, RNA-se	or ATAC-seq s of RNA-seq q and ATAC-se	٩		
Hothers							
Literature Latest public plants resea	ctaions about v arch	voody	Primer Design Design primers for Primer3	PCR using		Phylogenetic Tree Phylogenetic tree for a specific family	

Figure 10. Tools Page Overview.

The Tools page provides a collection of bioinformatics tools for analyzing genomic, transcriptomic, and other omics data. These tools support sequence analysis, functional annotation, gene expression studies, and evolutionary research, helping users explore various biological datasets efficiently.

1) Sequence Analysis

This section includes tools for sequence alignment, genome browsing, gene retrieval, and functional annotation. It allows users to compare sequences using BLAST, visualize genomic data with JBrowse, and retrieve genetic information such as mRNA and CDS. Additional tools support transcription factor annotation, gene ortholog

identification, and secondary metabolite analysis.

A. Blast

The BLAST page allows users to perform sequence similarity searches by inputting a nucleotide or protein sequence. Users can select reference databases from a wide range of plant species, including genomic, mRNA, and CDS data. After selecting the appropriate database, users can run the BLAST search to find homologous sequences, with an option to open results in a new tab.

Figure 11. Blast page Overview.

B. **JBrowse** (eg: *Acer negundo*, CM046694.1)

JBrowse is an interactive genome browser that allows users to visualize, analyze, and navigate genomic data efficiently. It supports multiple genome views, enabling users

to examine sequence alignments, gene annotations, and structural variations. The tool provides flexibility in selecting assemblies, searching genomic regions, and displaying various data tracks for detailed analysis.

Figure 12. JBrowse page Overview.

a) Start a New Session (Fig. a)

Upon launching JBrowse, users are presented with options to start a new session. Clicking on "Empty" allows users to begin a fresh session where they can load and explore genomic data.

b) Select a View Type (Fig. b)

Users can choose from multiple viewing modes, such as: Linear Genome View (default), Circular View, Dotplot View, Comparative and Synteny Views, Spreadsheet View for tabular data.

c) Load a Genome Assembly (Fig. c)

Users must first select an assembly from the available datasets. They can enter a specific sequence name, feature name, or genomic location to navigate directly to a particular region. Clicking "Open" will load the specified genomic data.

d) Navigate and Adjust the Genome View (Fig. d)

Once a genome assembly is loaded, users can: Zoom in/out using the magnification controls. Move along the sequence using navigation arrows. And click "Open Track Selector" to add or remove data tracks for visualization.

e) View and Manage Tracks (Fig. e)

Tracks display reference sequences, gene annotations, and other genomic features. Users can: Select tracks from the "Available Tracks" panel. Toggle visibility for individual tracks. And explore sequence alignments, annotations, and additional genomic insights.

C. Gene Retrieval (eg: Acer catalpifolium, GWHGASIS002255)

The Gene Retrieval tool allows users to search for genes by selecting a species and entering a gene identifier. It provides a comprehensive view of gene information, including sequence retrieval and structural visualization. This tool supports genomic research by enabling users to extract genomic, transcript, and protein sequences while also analyzing gene structure in a graphical format.

Home	Species	Taxonomy	Tools	Data	Help					
Acer cata	lpifolium	¢ G	WHGASIS002255	5					×	Search
						>GWHGASIS002 GGCCGTTACGATA TTATTTCAGTTCT GATCTTATTCTTTA	255 TGTCAACTGGGTCCAGTTGAAAT MGGAAGCAATAGAAACAGTTTGG TTTACTGATTTCTATAGTTATTTT	GTGTTTTTGTATATTTTCTCGTTTAGT TCACTGGTCTGATCAGGTAAATTCC IGTAGAAAAGTAGAATTTTTTTTATGC	AT SGT	
B Get S	Sequences					TAGCATCAAATTTG GACTGGATTGAAA TCATGATCTCTTG GTTGTGAATTCTG ATTGGAAAAAAAA TTTAGTCTTCAAGT	CAGATGAATGATCAACGTTAGT IGGGTTTTTGTTGTTGTTGTAGT AMATGTTTTTGATGATGATCACTD (AATCGAAAAGACCATTTCGAAG STGTCTTGGGGGGGAAATTAGGTGA AATTAATTAAAGACCTTAAAAGCAA	GIAAGTCAAATTGIAAACTTAIAG TGATTGAATACAGAGAGATAGATAT IGTTGACTGGGATTGGGTGTCAA IGGATTTGGTGTGTGAGATTGTGTAA IGATCAATTGCCTTCTGAGATTGAT AIGTTGTGCCACTATTTGTTTGTAAT	TTA GT JTT GG TTC TG	
Get Ge	nomics	Get mRNA	Get CDS	Get Pr	otein	TAATTTATCACTAAT GAAATTGTGTTTGT TCTGATATTATTGT CGGGGAAGACGA AAATTGAQAAAGA CTTATTCGACTTCC ATTAGCGATGGCA	TGMACAGGATATGATTCATATCAT TTTTTGATAGTCTGTGATGATGATGA TTTTGCTATTGATGTTTAGTGGA GAGGAATCACAATTTGTTAAGGT ICAGAAGAACAACAAGACAAGTCCCTTA GATTCAGTCTCTTTCAAGCATGAA ITTCATTGATGCCCATCTGGTTG	NIGATGACTITTETGAACAAWAICEN IETTGSTGAATAGTTIATGTGTGAGAA NICGOGAGAGAAWAITGGCGAGTTC GGTGGAAGAGAGAGAGCATTATCCAA TCTTTCAAAAGACTGTGTGTGAGGAATA AITTGTTTGTAAACCATGGTGCAGT ICTCAGAAACTGTTCTGATCTCCCTA	ATT FTC SA ATC ATA AG	
器 Gene	Structure							Copy Can	cel	
Summary:	Reference:Acer ca	talpifolium Search Locu	Acer catalpifoliun	n: +0, - <mark>0k</mark> Sho	w: GWHASIS00	000010:247	1334416 Length:	9704		< - R + >
24.8k25.0k	28.0k	27.0k	28.0k	29.0	k	30.0k	31.0k	32.0k	33.0k	34.0k
12471 REF + GGCCG	13 TTACGATATTGTCAACT	GGGTCCAGTTGAAATGTGTT	TTGTATATTTTCTCGT	ΤΤΑGTTTTTATT	↓ 247 TTCAGTTCTATGGA	794 AGCAATAGAAA				24877 ↓ ATTITACTGATTTCTATAGTT

Figure 13. Gene Retrieval page Overview.

a) Get Sequences

The Get Sequences section allows users to retrieve different types of sequences associated with a gene. By clicking "Get Genomics", "Get mRNA", "Get CDS", or "Get Protein", users can access and download the corresponding sequences in FASTA format. This feature is essential for downstream applications such as gene function analysis, molecular cloning, and comparative genomics.

b) Gene Structure

The Gene Structure section provides a visual representation of the gene's exon-intron organization, along with sequence annotations. Users can explore specific loci and sequence alignments, allowing for an in-depth understanding of gene architecture. The tool enables easy navigation through genomic regions and facilitates functional genomic studies.

D. Gene Annotation (eg: *Amborella trichopoda*, Amtri01G0000100.1)

The Gene Annotation page displays functional annotations generated using InterProScan27 (v5.24), providing insights into the protein family, domains, repeats, and Gene Ontology (GO) terms associated with a given gene. This analysis helps users understand the potential functions and biological roles of the gene's protein product.

Users can explore detailed domain signatures, homologous superfamilies, and GO

term predictions, including biological processes and molecular functions linked to the annotated protein. The interactive visualization allows filtering by entry type, status, per-residue features, and domain relationships, making it easier to analyze functional elements within the protein sequence.

Species: Amborella	trichopoda_Amtr_2024 C Gene: Amtri01G0000100.1 Search									
Filter view on	Protein									
Entry type Amtri01G0000100.1 The Homologous Superfamily 389 amino acids										
Image: Family Image: Domains Image: Domains Image: Repeats Image: None predicted. Image: Site Homologous superfamilies										
Status Cunintegrated Per-residue features	None predicted. Domains and repeats Domain Domain Domain Domain Domain									
Residue annotation Colour by	Detailed signature matches DNA topoisomerase I, DNA binding, eukaryotic-type									
ø domain relationship o source database	(Topoisom_I_N) I PR013500 DNA topoisomerase I, catalytic core, eukaryotic-type > PF01028 (Topoisom_I)									
	GO term prediction Biological Process									
	Molecular Function GO:0003677 DNA binding GO:0003317 DNA topolsomerase type I activity Cellular Component									

Figure 14. Gene Annotation Page Overview.

E. Transcriptional Factor (eg: Amborella trichopoda, WRKY)

The Transcription Factor (TF) Search tool allows users to identify and analyze transcription factors in woody plants. It is based on PlantTFDB and utilizes ESTScan 3.0 for transcription factor prediction. Users can search for specific TF families and retrieve matching TFs for a selected species.

The results include Protein ID, best hit in Arabidopsis (Ath), BLAST e-value, description, and options to retrieve gene, mRNA, CDS, and protein sequences. This tool helps researchers explore regulatory proteins involved in gene expression, facilitating functional genomics and comparative studies.

Home	Species	Taxonomy	Tools	Data	Help		
Woody F	Plant TF						
ዤ TF Se	arch						
Species:	Amborella trichopo	da	•	TF family:	WRKY	•	
I	Protein ID	Best h	it in Ath	Bla	ast evalue	Description	Sequence
Amtri	01G0088800.1	AT4G2	23810.1		0	WRKY family protein	Gene MRNA CDS Protein
Amtri	01G0098600.1	AT2G4	46130.1		0	WRKY DNA-binding protein 43	Gene MRNA CDS Protein
Amtri	01G0115100.1	AT4G	01250.1		0	WRKY family protein	Gene MRNA CDS Protein
Amtri	01G0125600.1	AT3G	58710.2		0	WRKY DNA-binding protein 69	Gene MRNA CDS Protein
Amtri	01G0197600.1	AT5G2	26170.1		0	WRKY DNA-binding protein 50	Gene MRNA CDS Protein
Amtri	01G0197600.2	AT5G2	26170.1		0	WRKY DNA-binding protein 50	Gene MRNA CDS Protein
Amtri	01G0197600.3	AT5G2	26170.1		0	WRKY DNA-binding protein 50	Gene MRNA CDS Protein
Amtri	02G0023600.1	AT2G3	34830.1		0	WRKY DNA-binding protein 35	Gene MRNA CDS Protein

Figure 15. Transcriptional Factor Page Overview.

F. Gene Orthologs (eg: *Abies alba*, AALBA5B739635P1)

The Gene Orthologs tool allows users to search for orthologous genes across 96 woody plant species. By selecting a species and entering a gene identifier, users can retrieve a list of genes that share evolutionary relationships across different plant genomes.

The results display species names and their corresponding orthologous genes, enabling comparative genomic analysis. Additionally, users can download all sequences in the orthologous group (OG) for further studies, supporting research in gene function evolution and species adaptation.

Home	Species	Taxonomy	Tools	Data	Help					
Gene O	rthologs									
Abies_alba	а	▼ AALBA	A5B739635P1		Search					
OG:					Download all sequences in this OG					
		Species			Orthologous genes					
		Abies alba			AALBA5B739635P1					
		Acer catalpifoli	um		GWHPASIS033777,GWHPASIS033781					
		Acer negunde	D		KAI9198223.1					
		Acer pseudosiebolo	dianum		GWHPBECT011249,GWHPBECT011250,GWHPBECT011251					
		Acer saccharu	m		KAK0578758.1,KAK0579365.1,KAK0579696.1					
		Acer truncatu	m		Atru.chr10.1174					
		Acer yangbien	se		Acyan13G0129200.1					
		Actinidia chiner	isis		Ach00g467731.2,Ach06g275251.2					
		Amborella trichor	ooda		evm_27.model.AmTr_v1.0_scaffold00092.82					
		Anacardium occid	ontalo		Anaoc.0016s0609.1.p,Anaoc.0016s0609.2.p,Anaoc.0016s0609.3.p,Anaoc.0016s					
		Anacarulum occiu	entale		0609.4.p,Anaoc.0016s0609.5.p					
		Aquilaria sinen	sis		evm.model.Scaffold90.37					
		Areca catech	u		Acat_16g012530					
		Artocarpus heterop	ohyllus		Ah000914g0002.1					

Figure 16. Gene Orthologs Page Overview.

G. Search by GO (eg: Abies alba, GO:0005524)

The Search by GO tool enables users to search for genes associated with specific Gene Ontology (GO) terms within a selected species. By entering a GO ID, users can retrieve a list of genes annotated with that term, including information such as species, gene ID, and functional prediction. This helps researchers explore genes related to specific biological processes, molecular functions, or cellular components.

Clicking on a GO ID redirects users to an external QuickGO page, where they can access detailed information about the GO term, including its definition, synonyms, ancestor relationships, and associated annotations. This integration provides deeper insights into gene functions and their biological roles.

GO Term				
Species: Abi	es_alba		GO ID: GO:0005524 Search	Reset
			selected	🚺 all
Serial Nu	nber Species	Gene ID	GO Term Prediction	34227
□ 1	Abies alba	AALBA5B1156670P1	GO:0005524: ATP binding GO:0005524 @ 2020 GO:0009058: biosynthetic process	-
□ 2	Abies alba	AALBA5B852467P1	GO:0005524: ATP binding Brown	aden et la soldano apteciación l
<u> </u>	Abies alba	AALBA5B225413P1	GO:0005524: ATP binding Anocetor Charl € GO:0055085: transmembrane transport GO:0016887: ATPase activity GO:0042626: ATPase activity, coupled to transmembrane movement of substances GO:0016021: integral component of membrane	
□ 4	Abies alba	AALBA5B939287P1	GO:0005524: ATP binding GO:0016887: ATPase activity	
□ 5	Abies alba	AALBA5B657567P1	GO:0005524: ATP binding GO:0006468: protein phosphorylation GO:0004672: protein kinase activity	

Figure 17. Search by GO Page Overview.

H. PlantiSMASH (eg: Acer negundo, Cluster 1)

The PlantiSMASH tool is designed for identifying and analyzing secondary metabolite biosynthetic gene clusters (BGCs) in plant genomes. It helps researchers explore genes involved in the biosynthesis of specialized metabolites such as terpenes, alkaloids, polyketides, and saccharides. By predicting and categorizing these clusters, PlantiSMASH facilitates the study of plant metabolic pathways and their potential applications in biotechnology and drug discovery.

Org	anism: Ace	er negundo												
Select Ge Overview	ne Cluster:	4 5 6	789	011	13 14	666 67 18 19 20 21 62 23 24	25 26 27 28	3 29	30 31 62 33	34				
Tdontified			ductors	<u> </u>										
Identified	secondary	metabolite	clusters			Search by locus tag. Pfam ID	or biosynthet	ic type	a. [
Cluster 🔺	Record 0	Туре	• From •	To Ø	Size (kb)	Core domains	CD-HIT Clusters	Most	similar vn cluster	MIBIG BGC-ID				
Cluster 1	CM046694.1	Terpene	107632	278829	171.20	Cellulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450	5	-		-				
Cluster 2	CM046694.1	Saccharide	14995868	15189610	193.74	Transferase, UDPGT_2	3	-		-				
Cluster 3	CM046694.1	Saccharide	18885845	19373018	487.17	MP-binding, Lipoxygenase, UDPGT_2	4	-		-				
Cluster 4	CM046694.1	Saccharide	35946695	36183754	237.06	FA_desaturase_c, forase, UDPGT_2, adh_short, adh_short_C2	4	-		-				
Cluster 5	CM046694.1	Saccharide	36794489	37146127	351.64	AMP-binding, UDPGT_2								
Cluster 6	CM046694.1	Saccharide	37631290	37791670	160.38	Glycos_transf_1, Methyltransf_11, p450	3			-				
Cluster 7	CM046694.1	Polyketide	39006341	39243460	237.12	Cellulose_synt, Chal_sti_synt_C, Chal sti synt N, Methyltransf 2, SE	5	-		-				
Cluster 8	CM046694.1	Putative	42900314	43021324	121.01	DIOX N, p450	Select Gene Cluster							
Cluster 9	CM046694.1	Putative	43262127	43469018	206.89	Cellulose synt, Lipoxygenase	CH046624.1 Clus	tor 1 Tore		0000				
Cluster 10	CM046694.1	Polyketide	49134190	49173059	38.87	Chal_sti_synt_C, Epimerase	Gene cluster desc	ription	mana Langine (ANEX) - 27032	an Cick on seven inc	more information			
Cluster 11	CM046694.1	Alkaloid	49836743	49894039	57.30	Bet v 1, HMGL-like	Show pHHM detection rul	ee used		FILL CALL OF GRIME TO				
Cluster 12	CM046695.1	Putative	14775468	14912534	137.07	DIOX_N, Lycopene_cycl, Peptidase_S10		••	4	-	+++	•		
Cluster 13	CM046695.1	Putative	37194637	37684130	489.49	20G-FeII_Oxy, Cellulose_synt, DIOX_N	[2] - [mm] [2] 2]							
Cluster 14	CM046696.1	Terpene	2605567	2784641	179.07	Terpene_synth, p450	Construction							
Cluster 15	CM046696.1	Terpene	8623533	8773789	150.26	Methyltransf_11, Terpene_synth, Terpene_synth_C	4							
Cluster 16	CM046696.1	Terpene	17568340	17603186	34.85	Terpene_synth, Terpene_synth_C, p450	E biosynthetic genes	E cher gene						
Cluster 17	CM046697.1	Terpene	3650144	3873636	223.49	SQS_PSY, Terpene_synth, Terpene_synth_C, n450	Legendi Cytochrome 450		Terpene synthase	SAND .	cyltranaferase	Cellulose synthese like	(Other) Biosynthetic Genes	Dther Gener
Cluster 18	CM046697.1	Saccharide-	8305351	8679559	374.21	Prenyltrans, SQHop_cyclase_C, SOHop_cyclase_N_UDPGT_2	biosynthetic genes		transport related genes		ory genes	Cither panez		
Cluster 19	CM046697.1	Saccharida	9302787	9543638	240.85	AMP-binding UDPGT 2		CON LIN	DIFORMATIKA	ap	John Street Cardina			
Cluster 20	CM046697.1	Putative	30877982	31031722	153.74	Methyltransf 2, Methyltransf 7	4	-						
Cluster 21	CM046697.1	Putative	34914717	35099212	184.50	COesterase, p450	5	-						
Cluster 22	CM046698.1	Terpene	3663563	3731186	67.62	Methyltransf_11, Terpene_synth,	3	-		-				
Cluster 23	CM046698 1	Dutativa	4387972	4626925	238.95	AMD-binding Methyltransf 2 adb short	6	-						
Cluster 24	CM046700 1	Putativa	726990	820914	83.92	Enimerase Methyltranef 11 p450	4							
Cluster 25	CM045700 1	Putative	3433319	3476834	43.52	Methyltransf 11 adb short	4							
Cluster 26	CM046700.1	Putative	13420788	13602689	181.90	Pentidase S10, p450	4							
Cluster 27	CM046702.1	Saccharide	3455669	3584624	128,96	UDPGT 2, p450	3	-						
Cluster 28	CM046702.1	Saccharide	6693220	6789892	96.67	Aminotran 1 2, Glycos transf 2, SE	3	-						
Cluster 29	CM046703.1	Alkaloid	21014717	21221241	206.52	AMP-binding, Aminotran_1_2, Str_synth, p450	6	-						
Cluster 30	CM046703.1	Saccharide	24001122	24122029	120.91	UDPGT_2, polyprenyl_synt	3							
Cluster 31	CM046704.1	Saccharide	20094763	20337186	242.42	2OG-FeII_Oxy, DIOX_N, Methyltransf_2, Peptidase S10, UDPGT 2, p450	9	-						
Cluster 32	CM046706.1	Terpene	13202418	13368497	166.08	Epimerase, Terpene_synth, Terpene_synth_C, n450	3	-		-				
Cluster 33	CM046706.1	Putative	14292454	14727555	435.10	20G-FeII Oxy, DIOX N	7							
Cluster 34	CM046706.1	Terpene	20021884	20215975	194,09	Epimerase, Terpene synth, Terpene synth C	10	1.1						
			21122004					-						
Showing 1	to 34 of 34	entries												
" ""	AGENINGE For quality of			IIK RMATIKA		John Innes Centre								

Figure 18. PlantiSMASH Page Overview.

a) Cluster Overview

The Cluster Overview page provides a summary of all identified biosynthetic gene clusters in a selected species. Each cluster is classified by type and includes details such as genomic coordinates, cluster size, core domains, and biosynthetic similarity. Users can search for specific loci or biosynthetic types and select a cluster ID to view its detailed gene structure and organization.

b) Detailed Gene Cluster View

Clicking on a cluster opens the Detailed Gene Cluster View, where users can examine the arrangement of genes within the cluster through a graphical representation. Genes are color-coded based on their function, such as biosynthetic, regulatory, and transport-related genes, allowing for easy interpretation of metabolic pathways. Users can also click on individual genes to access functional annotations, aiding in the study of secondary metabolite production in plants.

2) Omics Analysis

This section provides tools for analyzing transcriptome, epigenome, and chromatin accessibility data. Users can explore RNA-Seq expression profiles, microRNA annotation, and DNA-binding sites from ChIP-Seq data. Additionally, integrated analysis options allow users to combine RNA-Seq with ChIP-Seq or ATAC-Seq for a deeper understanding of regulatory mechanisms.

A. Transcriptome

The Transcriptomes tool provides a comprehensive analysis of gene expression across various tissues and treatments. Users can input gene IDs to retrieve expression data, visualize patterns through heatmaps and line charts, and access raw transcriptomic data. This tool helps researchers explore gene activity in different biological contexts and conditions.

Cajanus cajan: C.cajan_19257, C.cajan_19314, C.cajan_19575, C.cajan_19609, C.cajan_19667, C.cajan_19687, C.cajan_19721, C.cajan_19765, C.cajan_19768, C.cajan_19889

Figure 19. Transcriptomes Page Overview.

a) Submit Query (Fig. a)

Users can select a genome, specify tissues or treatments, and input up to 20 gene IDs separated by commas. Clicking "Search" retrieves the expression data for the selected genes, allowing further visualization and analysis.

b) Expression Heatmap (Fig. b)

The heatmap visually represents the expression levels of queried genes across different tissues. Higher expression values are displayed in red, while lower values appear in blue. This provides a quick overview of expression patterns in various biological conditions.

c) Line Chart of Gene Expression (Fig. c)

This interactive line chart plots expression trends of genes across different tissues. Each line represents a gene, allowing users to compare expression dynamics and identify tissue-specific patterns.

d) Expression Values Table (Fig. d)

The table provides a numerical representation of gene expression levels across tissues. Users can examine specific values to understand the quantitative differences in gene expression.

e) Raw Data Download (Fig. e)

This section contains Bioproject IDs, libraries, and RPKM expression values for transcriptomic datasets. Users can download raw expression data files (.tsv format) for further analysis and integration into bioinformatics workflows.

f) Software and Parameters

i. Trim Galore (Adapter Trimming)

Software: Trim Galore

Parameters: '-q 20 --stringency 3 --length 20 --gzip'

Purpose: Removes sequencing adapters and low-quality bases from raw RNA-seq reads.

ii. HISAT2 (Read Mapping)

Software: HISAT2

Parameters: '-p 10 -x genome_index -1 -2 '

Purpose: Maps cleaned RNA-seq reads to the reference genome.

iii. StringTie (Transcript Assembly and Quantification)

Software: StringTie

Parameters: '-p 10 -G genome.gtf -e'

Purpose: Assembles transcripts and estimates expression levels (FPKM, TPM) from mapped reads. Additionally, the prepDE.py script is used with StringTie outputs to extract count matrices for downstream differential expression analysis (e.g., DESeq2).

This pipeline ensures accurate RNA-seq data processing, including adapter trimming, read alignment, transcript assembly, and expression quantification, while facilitating downstream analysis with extracted count matrices.

B. MicroRNAs (eg: *Amborella trichopoda*, Atr-MIR1432a)

The MicroRNAs page provides comprehensive information on predicted and annotated miRNAs across different species. Users can search for miRNA loci, explore their genomic positions, and analyze their sequences and secondary structures. Additionally, the tool includes predicted target genes, helping to understand potential regulatory interactions.

Species Amb	orella trichopoda	•							Basic info. miRNA iccus ID	Air-151R 5 432a	
									Organism Genomic location Comments Confidence level	Amborala incheoda AmTr_v10_scaffeid0100 1352012 1352111 - A member of MR1432 ★★★	
Select an option to	downedad			Mature sec	quence	• Downio	ad selected	Download all	Secondary structure and sec	uence	
miRNA locus ID	miRNA family	Chromosome	Start	End	Strand	Confidence level	miRBase/PNRD	Select all	mature sequence	star sequence	
Alt-MIR1432a	MIR1432	AmTr_v1.0_scattoid00108	1352012	1352111		***	Virk	0	5 ATGA T - GAT GGAT	T C TC	
Ali-MIR1516a	MR1516	AmTr_v1.0_scattoid00004	5825329	5825449	4	***	N/K		ста сста	AGGG COO TETTETETACTACOGECOUT AG	
AI:-MIR15168	MR1516	AmTr_v1.0_scattoid00048	2963772	2963896		***	√/×		3 8.8.4 C C	a acat it	
All-MIR155a	MIR156	AmTr_v1.0_scaffold00044	4041321	4041445		***	N/X			el mahue sequence	Gel star sessionice
All-MR1060	MIR156	AmTr_v1.0_scattoid00053	805747	805954		***	N/K				
All-MIR1560	MIR156	AmTr_v1.0_scattoid00061	4133450	4133577		***	√/×		Get m	RNA stem-loop sequence	Gel mRNA stem-loop ± 20bp
Au-MR156d	MIR156	AmTr_v1.0_scaffold00077	2616695	2616910		***	√/×		Gel dol-bra:	ket imRNA secondary structure	
AV.MIR1569	MID 150	AmTr v1.0 scatloid00079	1172805	1173107		***	v/x		millité aluques inte		
									mining closerer mito.		
Alr-MIR156/	MIR156	AmTr_v1.0_scattoid00081	2902535	2902658	•	***	v/x		Ouster ID: Char	osome Cluster start. Cluster end	
Al-MR1587 Al-MR158g	MIR156 MIR156	AmTr_v1.0_scaffokd00081 AmTr_v1.0_scaffokd00104	2902535 2492508	2902658 2492631	•	***	\/x \/x	•	Cluster ID: Chose Million Chose No mRNA locus in ± 10k bp intervo	orome Cluster start. Cluster end . I.	
Ak-ANR1581 Ak-ANR158g	MR156 MR156 e infq.[-]	Amit_v10_scatiou00081 Amit_v10_scatiou00104	2902535 2492506	2902658 2492631 e ID		***	\/κ \}/κ	C	Curifer ID: Ciner No:mRNA basis in: 10: to interv	norm Contrant Contract	PARE-Seq 💿
All-MIRTSST All-MIRTSSp arget genu	MR156 MR156	Antr_v10_scattold00081 Antr_v10_scattold00104	2902535 2492508	2902658 2492631 e ID	100029	*** *** 9.340	stre stre	C	Charler ID: Charler ID: Charler NormRNA/beaus in a 100 kp interva psRNAtarget 2.5	norm Contract Contract RNAhybrid NA	PARE-Seq 🝞 NA
All-MRT587 All-MRT587 arget gen	MR156 MR156	Antr_v1 e_scatised0001 Antr_v1 e_scatised00104 Tail evm_27.model.An evm_27.model.An	2902535 2492506 Trget gene Tr_v1.0_ Tr_v1.0_	2902658 2492631 e ID _scaffold	100029	*** *** 9.340 1.364	sine sine	C	Guard D: Guard D	Norme Countraint Countraint RNAhybrid NA NA	PARE-Seq 💿 NA NA
Analorisar Analorisar	MR156 MR156	Antir, vi e jusaketotei Antir, vi e jusaketotei Antir, vi e jusaketotei Tai evm_27.model An evm_27.model An evm_27.model An	2902535 2492506 rget gene nTr_v1.0_ nTr_v1.0_ nTr_v1.0_	2902658 2492631 e ID _scaffold _scaffold	- 	*** *** 0.340 1.364 5.24	stre stre		Description Descripti Descripti Description Description Description	RINA CONFESSION CONFESSION RNAhybrid NA NA	PARE-Seq 💿 NA NA NA
An-MRTS9 An-MRTS9 arget gen	units units e inf <mark>.[-]</mark>	Antir, vi e Juanedotori Antir, vi e Juanedotori Antir, vi e Juanedotori Tari evrm_27.model.An evrm_27.model.An evrm_27.model.Ar	2902535 2492506 Trget gene Tr_v1.0_ Tr_v1.0_ nTr_v1.0, nTr_v1.0,	2902658 2492631 e ID _scaffold _scaffold _scaffol	- 	*** *** 0.340 1.364 5.24 0.33	ije ije	C	Courte Co. Courte Co. Courte Co. Courte Co. Courte Co. Courte Co.	eerer Constant Constant RNAhybrid NA NA NA	PARE-Seq 😰 NA NA NA NA
Au-Jan 1997 Au-Jan 1997	una156 IMR156	Antir, vi e jusaketototi Antir, vi e jusaketotototi Antir, vi e jusaketototi Antir, vi e jusaket	2902535 2492506 rget gene nTr_v1.0_ nTr_v1.0_ nTr_v1.0, nTr_v1.0, nTr_v1.0, nTr_v1.0,	2902658 2492631 e ID _scaffold _scaffol _scaffol	- 	*** *** 0.340 1.364 5.24 0.33 7.10	ide ide	• • •	Description Descripti Descripti Description Description Description	enere Convent Convent RNAhybrid NA NA NA NA	PARE-Seq 😰 NA NA NA NA NA

Figure 20. MicroRNAs Page Overview.

a) miRNA Locus Search and Selection

Users can search for miRNAs by selecting a species and browsing the available miRNA loci. The results include detailed annotations such as the miRNA family, chromosome location, start and end positions, strand orientation, and confidence level. Users can also download selected sequences in various formats.

b) miRNA Structural and Sequence Analysis

Clicking on a specific miRNA locus opens a detailed page displaying its sequence, secondary structure, and genomic location. This section allows users to download the mature sequence, star sequence, stem-loop sequence, and dot-bracket notation of the miRNA's predicted secondary structure.

c) Predicted miRNA Target Genes

The target gene prediction section provides a list of putative target genes regulated by

the selected miRNA. It includes target gene IDs and scores from multiple prediction algorithms (e.g., psRNAtarget, RNAhybrid, PARE-Seq) to assess binding strength and regulatory potential.

d) Software and Parameters

i. Trim Galore (Adapter Trimming)

Software: Trim Galore

Parameters: '--small_rna --length 18 --max_length 26 --dont_gzip --suppress_warn'

Purpose: Removes adapters and filters raw reads to retain only sRNAs with a length between 18 and 26 nucleotides.

ii. miRDeep-P2 (miRNA Identification)

Software: miRDeep-P2

Parameters: '-g genome.fa -x bowtie_index -L 15 -R 5 -p 1 -q'

Purpose: Identifies novel and known miRNAs by aligning small RNA reads to the reference genome using Bowtie and predicting miRNA precursors with RNAfold.

iii. miRAnno (miRNA Annotation)

Software: miRAnno

Parameters: '-s -g genome.fa'

Purpose: Annotates miRNAs based on the PmiREN database, linking predicted miRNAs to their known functions and species-specific roles.

This pipeline ensures high-quality miRNA discovery and annotation by integrating adapter trimming, miRNA identification, and functional annotation into a streamlined workflow.

C. ChIP (eg: Ach00g469981.2, Chr00, 2122, 2787)

The ChIP-Seq page enables users to analyze chromatin immunoprecipitation sequencing (ChIP-Seq) data by identifying protein-DNA interactions. It provides functionalities to search for peaks associated with specific genes or genomic regions, filter results based on species and sequencing libraries, and obtain detailed peak annotations such as promoter regions, intergenic regions, and distances to transcription start sites (TSS).

Locus			Locus		O Pipelin	e for ChIP-	eq analyse:	5			Download	Results
			Gene Identifier	Range								
Gene Identifier	Range		Chr.		Peak :	Chr :	Start ‡	End :	Anno ;	DistanceToTSS :	Flank_genelDs :	Flank_c
Ach00g469981.2			chr00		313	Chr00	2112	2787	Promoter	-390	Ach00g469981.2	
			Start		191	Chr00	3407	3627	Promoter	230	Ach00g469981.2	
Filter			2122		309	Chr00	3922	4340	Promoter	745	Ach00g469981.2	
ariar			End		158	Chr00	3959	4272	Promoter	782	Ach00g469981.2	
Aji		\$	2787		155	Chr00	7467	7725	Distal Intergenic	4290	Ach00g469981.2	
R library:			Filter		-	-	-					Þ
All .		\$	Species									
Sear	ch		All	:								
and the second second	- Mailer	_	SRR library									
			All	:								

Figure 21. ChIP Page Overview.

a) Peak Search Parameters

Users can search for peaks by either gene identifier or a specific genomic range (chromosome, start, and end positions). Filters are available to refine results based on species and SRR sequencing libraries, allowing users to customize their search for relevant ChIP-Seq data.

b) ChIP-Seq Results

The results table displays detected ChIP-Seq peaks along with their genomic coordinates (chromosome, start, and end positions). Additionally, it provides peak annotations, indicating whether a peak is located in a promoter or distal intergenic region, and the distance to the transcription start site (TSS). Each peak is linked to the flanking gene(s), helping researchers explore potential regulatory interactions.

Users can download the ChIP-Seq results for further analysis by clicking the

"Download Results" button. This feature allows for offline examination and integration with external bioinformatics tools for deeper insights into transcription factor binding and epigenetic modifications.

c) Software and Parameters

i. Trim Galore (Adapter Trimming)

Software: Trim Galore

Parameters: '-q 20 --stringency 3 --length 20 --gzip'

Purpose: Removes adapters and low-quality bases from ChIP-Seq raw reads, preparing data for downstream alignment.

ii. Bowtie2 (Read Mapping)

Software: Bowtie2

Parameters: '-p 10 -x genome index -1 -2 '

Purpose: Maps cleaned ChIP-Seq reads to the reference genome, producing sorted BAM files for peak calling.

iii. MACS2 (Peak Calling)

Software: MACS2

Parameters: '--nomodel -f AUTO --keep-dup 1 -q 0.05 -B -g '

Purpose: Identifies significant enrichment regions (peaks) in the genome that represent potential DNA-protein interaction sites.

This pipeline ensures high-quality ChIP-Seq analysis by integrating adapter trimming, read alignment, and peak calling to identify DNA-protein interaction sites.

D. ATAC (eg: Ach00g469981.2, Chr00, 5974, 6244)

The ATAC-Seq page allows users to analyze chromatin accessibility data, providing insights into open chromatin regions that may regulate gene expression. This tool helps researchers identify regulatory elements such as enhancers and promoters, offering options to search peaks linked to specific genes or genomic loci. The results include peak annotations, transcription start site (TSS) distances, and flanking genes, with an option to export data for further analysis.

Locus		Locus		Ø Pipeline for ATAC-seq analyses		Download Results
		Gene Ident	iffer Range			Download Results
Gene Identifier	Range	Chr		Peak : Chr : Start :	End : Anno : DistanceToTS	5 : Flank_genelDs : Flank_
ch00g469981.2		chr00		184 Chr00 5974	6244 Promoter (2-3kb) 2797	Ach00g469981.2
		Start		4		•
ilter		5974				
cies		End				
All		\$				
R library:						
II.		‡ Filter				
		Species				
Searc	sh	Al				
		SRR library				
		All				
			Search			

Figure 22. ATAC Page Overview.

a) Peak Search Parameters

Users can search for chromatin accessibility peaks using either a gene identifier or a specific genomic range by defining chromosome coordinates. Filters are available to refine searches by species and sequencing library, enabling targeted data retrieval for specific experimental conditions.

b) ATAC-Seq Results

The results table displays detected ATAC-Seq peaks, including chromosomal location, start and end positions, and annotations indicating whether a peak is located within a promoter, enhancer, or other functional region. Additionally, the distance to the nearest transcription start site (TSS) is provided, helping users assess regulatory potential.

Users can download ATAC-Seq results in tabular format for further computational analysis. This feature facilitates downstream investigations into chromatin

accessibility patterns, transcriptional regulation, and functional genomics research.

c) Software and Parameters

i. Trim Galore (Adapter Trimming)

Software: Trim Galore

Parameters: '-q 20 --stringency 3 --length 20 --gzip'

Purpose: Removes adapters and low-quality bases from ATAC-Seq raw reads, ensuring clean data for downstream alignment.

ii. Bowtie2 (Read Mapping)

Software: Bowtie2

Parameters: '-p 10 -x genome_index -1 -2 '

Purpose: Maps cleaned ATAC-Seq reads to the reference genome, producing sorted BAM files for peak calling.

iii. MACS2 (Peak Calling)

Software: MACS2

Parameters: '--nomodel -f AUTO --keep-dup 1 -q 0.05 -B -g '

Purpose: Identifies significant enrichment regions (peaks) in the genome, representing open chromatin sites and accessible regulatory elements.

This pipeline ensures reliable ATAC-Seq data analysis by integrating adapter trimming, read alignment, and peak calling to study chromatin accessibility and open chromatin regions.

E. Methylation (eg: Thecc.01G000300, Chr12, 14592, 19924)

The BS-Seq (Bisulfite Sequencing) page provides users with DNA methylation data, allowing them to explore methylation patterns across different genomic regions. This tool helps researchers understand epigenetic modifications by distinguishing between methylated and unmethylated reads, providing insights into gene regulation, development, and environmental responses. Users can search for methylation data by gene ID or specific genomic loci, and the results include detailed methylation ratios along with filtering and export options.

us	Locus					
		Pipeline for BS-seq and	alyses			Download Results
Gene Identifier Range	Gene Identifier Range	Chr S	start * End *	Methylated reads ±	Unmethylated reads *	Ratio
ecc.01G000500	Chr		ant - Linu -	mentfulco_reads :	chineurylated_reads :	Rubo
	Chromosome_1	Chromosome_1 23	3731 23731	1	0	100
er	Slart	Chromosome_1 27	7662 27662	1	0	100
	23731	Chromosome_1 29	9336 29336	1	0	100
:	End	Chromosome_1 23	3012 23012	7	0	100
brary:	23731	Chromosome 1 23	3013 23013	9	0	100
:			20010			100
Search	Filter	Chromosome_1 23	3039 23039	/	0	100
	Species	Chromosome_1 23	3040 23040	8	1	88.8888888888889
	All	Chromosome_1 23	3081 23081	6	1	85.7142857142857
	SRR library:	Chromosome_1 23	3093 23093	7	0	100
	All	Chromosome 1 23	3094 23094	9	0	100
	Search	4		-		

Figure 23. Methylation Page Overview.

a) Peak Search Parameters

Users can search for methylation peaks using either a gene identifier or a specific chromosomal range by specifying coordinates. Filters are available to narrow searches by species and sequencing libraries, enabling focused retrieval of methylation data relevant to specific biological conditions.

b) **BS-Seq Results**

The results table displays key methylation statistics, including chromosomal positions, number of methylated and unmethylated reads, and methylation ratios. This data helps users assess the methylation status of specific genomic sites, aiding in the study of gene expression regulation and epigenetic modifications.

Users can export the methylation data in a tabular format for downstream computational analyses. This allows for further investigation of DNA methylation dynamics, identification of differentially methylated regions (DMRs), and integration with transcriptomic and genomic datasets.

c) Software and Parameters

i. Trim Galore (Adapter Trimming)

Software: Trim Galore

Parameters: '-q 20 --stringency 3 --length 20 --gzip'

Purpose: Removes adapters and filters low-quality bases from BS-Seq raw reads to prepare clean data for downstream analysis.

ii. Bismark (Alignment and Methylation Analysis)

Software: Bismark

Parameters:

Step 1: 'bismark_genome_preparation' to index the reference genome.

Step 2: '--bowtie2 -N 0 -L 20 -p ' for read alignment.

Step 3: 'deduplicate_bismark' to remove PCR duplicates.

Step 4: 'bismark_methylation_extractor --bedGraph --counts --comprehensive' to extract methylation calls.

Purpose: Aligns reads to the bisulfite-converted reference genome, removes duplicates, and extracts comprehensive methylation data for further analysis.

This pipeline ensures accurate DNA methylation analysis, integrating adapter trimming, alignment, deduplication, and methylation call extraction to provide high-quality methylation profiles.

F. RNA-seq & ChIP or ATAC-seq (eg: ChIP-seq & RNA-seq,

Actinidia chinensis, SRR26816478, chr00, 2122, 2787)

The RNA-Seq & ChIP or ATAC-Seq page integrates transcriptomic (RNA-Seq) and epigenomic (ChIP-Seq or ATAC-Seq) data, allowing users to examine gene expression in conjunction with regulatory element interactions. This functionality

helps researchers analyze how chromatin accessibility or transcription factor binding correlates with gene expression, providing insights into gene regulation mechanisms. Users can search for peaks related to specific genes, filter by species and sequencing libraries, and view expression levels across different tissues.

🔠 Peak S	earch Parame	eters	а	🖸 Down	load Resu	lts		b		3 re	sults found
Locus											
Gene Identifier	Peak Range	Gene Identifier	Peak Range			I	Peak Info.			Expre Le	ession vel
Filter		Chr: chr00		Chr ‡	Start ‡	End ‡	Anno ‡	distanceT oTSS	Peak ‡	fruit 🗘	leaf ‡
Type: ChIP-Seq 8	k RNA-Seq 🗘	Start: 2122		Chr00	2112	2787	Promoter	-390	313	2797	184
Species: Actinidia ch	iinensis 🌲	End: 2787		Chr00	3407	3627	Promoter	230	191	3071	191
SRR library	r: 78 🗘	Filter Type:	DNA Son	Chr00	7467	7725	Distal	4290	155	10577	155
Se	arch	Species: Actinidia ch	inensis			1120	Intergenic	1200			
		SRR library SRR268164	78	< ■							More
		Se	arch							l	wore

Figure 24. RNA-seq & ChIP or ATAC-seq Page Overview.

a) Peak Search Parameters

Users can input either a gene identifier or a specific chromosomal range to identify peaks of interest. Filters are available to refine searches by data type (ChIP-Seq & RNA-Seq), species, and sequencing library, enabling precise retrieval of relevant regulatory interactions.

b) RNA-seq & ChIP or ATAC-seq Results

The results display detected regulatory peaks, including chromosomal positions, annotation type (e.g., promoter or intergenic region), distance to transcription start sites (TSS), and peak intensity values. This information helps identify potential regulatory elements influencing gene expression.

For each identified peak, gene expression levels in different tissues (e.g., fruit and leaf) are presented. This enables correlation between regulatory peak intensity and gene expression, assisting in understanding transcriptional regulation under different biological conditions.

Users can download the results for further analysis, facilitating comparative studies

between transcription factor binding, chromatin accessibility, and gene expression across different species and conditions.

3) Others

This section includes resources for literature search, primer design, and phylogenetic tree construction. Users can access the latest research publications, design PCR primers, and generate phylogenetic trees for specific plant families.

A. Literature (eg: *Amborella trichopoda*)

The Literature page enables users to search for research articles related to a specific species. Users can filter literature based on various criteria, such as year, author, title, journal, keyword, and abstract. The platform provides access to a vast collection of published studies, ensuring that users can stay updated with the latest scientific research.

Figure 24. Literature Page Overview.

a) Search and Filter

Users can select a species and refine their search by specifying additional filters such

as publication year, author name, or keywords. The interface allows multiple search criteria to be applied simultaneously, enabling precise literature retrieval.

b) Literature Results Display

The search results are displayed in a tabular format, showing key details such as the publication year, authors, and article titles. Clicking on a title redirects users to the original research article for further reading. The database is regularly updated to ensure access to the most recent publications.

c) Data Overview and Management

At the top right corner, users can view the last update date and the total number of available articles. A reset option is also available to clear filters and start a new search, ensuring an efficient and seamless user experience.

B. Primer Design (eg: Acer catalpifolium, GWHGASIS002255)

The Primer Design tool allows users to design primers for genetic analysis efficiently. By selecting specific genes or entering sequences manually, users can customize primer parameters to suit their experimental needs. The tool integrates various options for sequence retrieval, masking nucleotides, and optimizing primer selection, ensuring high-quality primer design for PCR and other molecular applications.

Primer Design	
Select the \underline{Task} for primer selection genetic	~
Species: Acer catalpifolium	~
Gene: GWHGASIS002255 Genomics	✓ Get sequence d
or enter sequences	
Соссоттасоататтотсалстосоттсалатототтто асабттосотсостостосатсасотосалотосато ателет птитатосотносолсолого асабатостисалоти птитатоти от постосало асабатости сабато постостостосалато с с с с с с с с с с с с с с с с с с с	TATATTTTCTCGTTTAGTTTTATTTTAGGTTCTATGGAAGCAATAGAA TTTATTTACTGATTTCTATAGTTTATTTTGTAGAAAAGTAGAATATTT GTGTAAGTCAAATTTGTAAACTTTATTAGTTAGACTGGATTGAATGGT GTCATAGTCTTGCAAATGTTTTTTGTTAGTAGTAGCATTGAATGAA
Primer failure rate cutoff <; 0.1	Pick left primer, or use left primer below
Nucleotides to mask in 5'	Pick hybridization probe (internal oligo), or use oligo below
Nucleotides to mask in 3'	□ Pick right primer, or use right primer below (5' to 3' on opposite strand)
Pick Primers Download Settin	ngs Reset Form
Show Advanced Parameters	

Figure 25. Primer Design Page Overview.

a) Gene Selection and Sequence Input

Users can either select a species and gene ID to retrieve genomic, mRNA, CDS, or protein sequences or manually enter a custom sequence. This flexibility allows researchers to design primers for a wide range of target sequences.

b) Basic Parameter Configuration

The interface provides key settings such as primer failure rate cutoff and nucleotide masking at the 5' and 3' ends. Additional options include selecting left or right primers and hybridization probes, ensuring tailored primer design for different experimental setups.

c) Primer Design and Download Options

Once the parameters are set, users can generate primers using the Pick Primers button.

The tool also allows users to download settings for future use or reset the form to start a new design process. The Show Advanced Parameters button provides access to additional customization settings for expert users.

C. Phylogenetic Tree (eg: Aquifoliaceae)

The Phylogenetic Tree tool allows users to visualize evolutionary relationships among different species or genes using a hierarchical tree structure. This interactive tool supports various visualization modes, filtering options, and branch selection, providing researchers with a powerful platform to analyze phylogenetic relationships.

Figure 26. Phylogenetic Tree Page Overview.

a) Tree Visualization and Navigation

Users can choose between linear and radial tree representations to best fit their analytical needs. The interface provides zooming and panning functionalities, making it easy to explore complex phylogenetic structures.

b) Species and Branch Selection

The dropdown menus allow users to filter and select specific taxa or genes of interest.

Users can highlight branches, compare evolutionary distances, and focus on specific clades to extract meaningful insights.

c) Filtering and Data Exploration

By using the Filter branches on option, users can dynamically refine the displayed tree to highlight relevant evolutionary relationships. This feature enables researchers to focus on specific groups, compare divergence points, and analyze the hierarchical clustering of species or genes.

5. Data

The DATA page serves as a central repository for all raw and processed data generated by the database, systematically categorized by species or file type. Users can access various datasets, including ATAC-seq, ChIP-seq, BS-Seq, RNA-seq, Gene Ontology annotations, orthologous gene data, genome sequences, and structural annotations. This organization ensures efficient retrieval of relevant genomic, transcriptomic, and functional data.

Each file entry includes metadata, such as the last modified date, ensuring users have access to the latest datasets. Researchers can navigate through these directories to download essential files for further analysis, supporting a wide range of genomics and bioinformatics studies.

Name	Last modified	<u>Size</u>
ATAC-seq/	2024-11-13 16:15	-
<u>BS-Seq/</u>	2024-11-13 16:16	-
ChIP-Seq/	2025-02-06 16:43	-
Gene_Ontology/	2025-02-06 16:46	-
Genome/	2025-02-08 22:30	-
Orthologous/	2024-11-13 16:19	-
Protein/	2025-02-06 16:54	-
RNA-seq/	2024-11-13 16:20	-
RNA-seq & ChIP or ATAC-seq/	2024-12-18 17:21	-
Taxonomy/	2024-06-25 13:47	-
<u>cds/</u>	2025-02-06 16:47	-
<u>gff/</u>	2025-02-06 16:51	-
mRNA/	2024-11-22 16:19	-
sRNA-sea/	2024-11-13 16:20	-

Figure 27. Data Page Overview.

6. Help

The Help page provides users with essential resources, including documentation, an about section, and contact information. Users can report issues, provide feedback, or seek assistance via email (Contact@woodyplant.com) or by visiting the listed physical address in Nanjing, China.

7. Q & A

1) How to find information about a specific gene for a particular species?

To retrieve detailed information about a specific gene in a woody plant species, users can follow these steps:

A. Step 1: Use the Gene Retrieval Tool

- Tools > Gene Retrieval (<u>https://woodyplant.com/generetrieval</u>).
- Select the desired species from the dropdown list.
- Enter the gene ID and click Search.
- This will return key sequence data, including:
 - Genomic sequence
 - mRNA sequence
 - CDS (coding sequence)
 - Protein sequence

Acer catalpifolium \$	GWHGASIS002255	Search
Get Genomics Get mRNA	Get CDS Get Protein	

B. Step 2: Explore Gene Structure

- After retrieving the gene, users can analyze its structural features.
- The Gene Structure section displays exon-intron organization and base-pair positioning, aiding in understanding gene architecture.

🔀 Gene Stru	cture								
Summary: Referer	nce:Acer catalpifoli	ium Search Locus: /	Acer catalpifolium: ·	+0, -0k Show: GWH	ASIS00000010:247	1334416 Length: §	9704		< - R + >
24.8k25.0k	28.0k	27.0k	28.0k	29.0k	30.0k	31.0k	32.0k	33.0k	34.0k
L24713 REF + GGCCGTTACGAT - CCGGCAATGCTA	TATTGTCAACTGGGTCC ATAACAGTTGACCCAGG	AGTTGAAATGTGTTTTT STCAACTTTACACAAAA	IGTATATTTTCTCGTTT ACATATAAAAAGAGCAAA	AGTTTTTATTTTCAGTT TCAAAAATAAAAGTCAA	↓ 24794 CTATGGAAGCAATAGAAA GATACCTTCGTTATCTT1	CAGTTTGGTCACTGGTC	TGATCAGGTAAATTCCA GACTAGTCCATTTAAGG	ATGATCTTATTCTTTATT TACTAGAATAAGAAATAA	24877 ↓ TTTACTGATTTCTATAGTT AAATGACTAAAGATATCAA

C. Step 3: Investigate Gene Function via Annotation

- Tools > Gene Annotation (<u>https://woodyplant.com/toolannotation</u>).
- Input the gene ID to obtain InterProScan-based functional predictions.
- This will provide insights into:
 - Protein domains and families
 - GO term predictions (biological processes, molecular functions, and cellular components)
 - Functional annotations from homologous proteins

Species: Ambore	Illa_trichopoda_Amtr_2024 Cene: Amtri01G0000100.1 Search
Iter view on	Protein
Entry type	Amtri01G0000100.1
Homologous Homologous	Length 389 amino acids
Family	
Domains	Protein family membership
Repeats	None predicted.
Site Site	Homologous superfamilies
Status	None predicted.
Unintegrated	Domains and repeats
Per-residue features	→ → → → → → → → → → → → → → → → → → →
Residue annotation	Detailed signature matches
	IPR008336 DNA topoisomerase I, DNA binding, eukaryotic-type
olour by	► PF02919 (Topolsom, I_N)
domain relationship	DNA transcores DNA transcorerase I catalytic core eukarvatic-type

D. Step 4: Identify Related Transcription Factors

- Tools > Transcriptional Factor (<u>https://woodyplant.com/tooltransfactor</u>).
- This will display associated TF families, regulatory potential, and corresponding orthologs.

🔀 TF Search				
Species: Amborella trichopoda	•	TF family: WRKY	•	
Protein ID	Best hit in Ath	Blast evalue	Description	Sequence
Amtri01G0088800.1	AT4G23810.1	0	WRKY family protein	Gene MRNA CDS Protein
Amtri01G0098600.1	AT2G46130.1	0	WRKY DNA-binding protein 43	Gene MRNA CDS Protein
Amtri01G0115100.1	AT4G01250.1	0	WRKY family protein	Gene MRNA CDS Protein

E. Step 5: Explore Expression Patterns

- Tools > Transcriptome (<u>https://woodyplant.com/tooltreatment</u>)
 - Select the species and input the gene ID to generate:
 - Expression heatmaps for different plant tissues.
 - Line charts showing dynamic expression trends.
 - Expression value tables for statistical analysis.

F. Additional Research Ideas

- Compare the expression levels of the gene across different tissues (e.g., leaves, roots, flowers) to infer potential functional roles.
- Analyze differential expression under various treatments (e.g., drought, salinity) to study its stress response.
- Use ChIP-Seq and ATAC-Seq data to check whether this gene is a target of transcriptional regulation.

2) How to access data on a gene family across all woody plant species?

To explore the presence and evolution of a specific gene family across multiple woody plant species, users can employ the following strategies:

A. Step 1: Search for Orthologs Across Species

- Tools > Gene Orthologs (<u>https://woodyplant.com/geneorthologs</u>).
- Enter a reference gene ID or select a species.
- This will retrieve orthologous genes across 96 woody plant species, allowing for:
 - Phylogenetic comparisons of gene conservation and divergence.
 - Cross-species functional annotation transfer.

Gene Orthologs							
Abies_alba	▼ AALBA5B739635P1	Search					
OG:		Download all sequences in this OG					
	Species	Orthologous genes					
	Abies alba	AALBA5B739635P1					
	Acer catalpifolium	GWHPASIS033777, GWHPASIS033781					
	Acer negundo	KAI9198223.1					

B. Step 2: Explore Transcription Factor Families

- Tools > Transcriptional Factor.
- Select the species and input the TF family name (e.g., WRKY, MYB).
- This will return all TFs belonging to the selected family, along with:
 - Best hits from Arabidopsis, aiding functional inference.
 - o BLAST e-values, providing confidence scores for homology.

器 TF S	Search					
Species:	Amborella trichopoda	•	TF family:	WRKY	•	
	Protein ID	Best hit in Ath	Blas	st evalue	Description	Sequence
Am	tri01G0088800.1	AT4G23810.1		0	WRKY family protein	Gene MRNA CDS Protein
Am	tri01G0098600.1	AT2G46130.1		0	WRKY DNA-binding protein 43	Gene MRNA CDS Protein
Am	tri01G0115100.1	AT4G01250.1		0	WRKY family protein	Gene MRNA CDS Protein

C. Step 3: Conduct Phylogenetic Analysis

• Tools > Phylogenetic Tree (<u>https://woodyplant.com/phylotreejs</u>).

- Upload gene sequences from multiple species and generate:
 - Linear or radial phylogenetic trees.
 - Branch selection and filtering tools to highlight subgroups.

phylotree.js	Aquifoliaceae Selection	Filter branches on
phylotree.js	Aquifoliaceae Selection - Aquifoliaceae Oleaceae Lauraceae Fagaceae Hex_afinis Hex_afin	Filter branches on
	Itex_inormana_121 Itex_longipes_77 Itex_curtistii_122 Itex_decidus_725	

- D. Step 4: Investigate Secondary Metabolite Biosynthesis
 - Tools > PlantiSMASH (<u>https://woodyplant.com/toolpathway</u>).
 - Select a species and analyze gene clusters related to biosynthetic pathways.
 - This can reveal conserved pathways across species, providing insights into metabolic evolution.

Org	anism: Ace	er negundo							
Select Ge Overview	ne Cluster:	4 5 6	789	10 11 12	13 14	(5 (6 (7) 18 19 20 21 22 23 24	4 <mark>25 26</mark> 27 28	29 30 31 32	<mark>33</mark> 34
Identified	l secondary	metabolite	clusters						
						Search by locus tag. Pfam ID) or biosynthetic	type:	
						ocarch by locas tag, riam ib	or biobymaneare	c/pci	
Cluster 🔺	Record 🍦	Туре	♦ From ♦	To \$	Size (kb)	Core domains		Most similar known cluster	♦ MIBiG BGC-ID
Cluster A	Record \$	Type Terpene	♦ From ♦ 107632	To \$	Size (kb) ↓ 171.20	Core domains Cellulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450	CD-HIT Clusters 5	Most similar known cluster	♦ MIBiG BGC-ID
Cluster A Cluster 1 Cluster 2	Record CM046694.1 CM046694.1	Type Terpene Saccharide	♦ From ♦ 107632 14995868	To ♦ 278829 15189610	Size (kb) ∲ 171.20 193.74	Core domains Cellulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450 Transferase, UDPGT_2	CD-HIT Clusters	Most similar known cluster	MIBiG BGC-ID -
Cluster 1 Cluster 2 Cluster 3	Record CM046694.1 CM046694.1 CM046694.1	Type Terpene Saccharide Saccharide	 From 107632 14995868 18885845 	To ♦ 278829 15189610 19373018	Size (kb) ♦ 171.20 193.74 487.17	Core domains Cellulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450 Transferase, UDPGT_2 AMP-binding, Lipoxygenase, UDPGT_2	CD-HIT Clusters	Most similar known cluster	MIBiG BGC-ID - -
Cluster A Cluster 1 Cluster 2 Cluster 3 Cluster 4	Record ♦ CM046694.1 CM046694.1 CM046694.1 CM046694.1 CM046694.1 CM046694.1	Type Terpene Saccharide Saccharide	 ♦ From ♦ 107632 14995868 18885845 35946695 	To 278829 15189610 19373018 36183754	Size (kb) ♦ 171.20 193.74 487.17 237.06	Core domains Core domains Collulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450 Transferase, UDPGT_2 AMP-binding, Lipoxygenase, UDPGT_2 FA_desaturase_2, Transferase, UDPGT_2, adh_short_C2	CD-HIT Clusters 5 3 4 4	Most similar known cluster - - -	♦ MIBiG BGC-ID
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5	Record CM046694.1 CM046694.1 CM046694.1 CM046694.1 CM046694.1	Type Terpene Saccharide Saccharide Saccharide	 ♦ From ♦ 107632 14995868 18885845 35946695 36794489 	To \$ 278829 15189610 19373018 36183754 37146127	<pre>Size (kb) 171.20 193.74 487.17 237.06 351.64</pre>	Cellulose_synt, SQHop_cyclase_C, SQHop_cyclase_N, Transferase, p450 Transferase, UDPGT_2 AMP-binding, Lipoxygenase, UDPGT_2 FA_desaturase_2, Transferase, UDPGT_2, adh_short, adh_short_C2 AMP-binding, UDPGT_2	Clusters 5 3 4 4 5	Most similar known cluster - - - -	

E. Additional Research Ideas:

- Study the expansion and contraction of gene families across evolutionary lineages.
- Compare expression patterns in different species to identify species-specific regulatory roles.
- Investigate whether specific orthologs are under positive selection by analyzing sequence divergence.

3) How to quickly download data from WP-MOD for customized analysis?

For large-scale bioinformatics analyses, users may need to download all results in WP-MOD for their following study. The DATA page provides access to all source files.

- Visit the DATA page (<u>https://woodyplant.com/ftp?path=data</u>) to obtain the following data in the respective directory.
 - ATAC-seq/
 - BS-Seq/
 - ChIP-Seq/
 - Gene_Ontology/
 - o Genome/
 - Orthologous/
 - o Protein/
 - RNA-seq/
 - o RNA-seq_&_ChIP_or_ATAC-seq/
 - o Taxonomy/
 - o cds/
 - \circ gff/
 - o mRNA/
 - o sRNA-seq/